污水先经化粪池或其他预处理构筑物去除大型悬浮物, 然后通过布水管和毛细材料的虹吸作用, 将污水均匀分布于根据现场土质人工配制的通水透气性能良好的人工土壤中, 人工土壤中聚集着大量微生物和各种微型动植物, 在这些需氧微生物和厌氧微生物的协同代谢作用下, 污水中的有机物被吸附、降解和转化为二氧化碳和水, 有机氮被分解转化为硝酸盐或氮气, 污水因此得到净化和除臭, 净化的出水通过底部集水管收集、排放或再利用。地下渗滤的推广主要受其水力负荷低、占地面积大的限制, 处理1 m3 污水占地为6~ 8 m2 。合适的土层配置可以提高系统的渗透性能, 水力负荷高可升至40 cm /d。地下土壤渗滤工艺技术需要布设管网, 工程投资较大,不需要管理和维护。适用于用地比较宽松、经济状况一般的农村地区。生活污水通过管道汇集于生物滤池, 生物滤池内放置微晶纳米复合滤料, 该滤料具有优良的吸附性能和比表面积, 在微晶纳米滤料表面提供优越的微生物生存空间、污水较好的营养条件下, 微生物快速繁殖, 生物量剧增, 微生物物种多样性增加, 在微生物分泌的粘性物质作用下, 微生物互相吸附, 在滤料表面形成大量高活性生物膜, 快速降解水中的污染物。在快速去污的同时, 微晶纳米复合滤料的除臭、去色功能将明显地体现, 污水臭味大大降低, 水体透明度提高, 水体感官明显改善。
物理杀菌方式主要有超声波与磁场组合杀菌、变频电脉冲杀菌和紫外线杀菌等。超声波与磁场组合杀菌能够自动周期性地、有规律地产生各种频率的强大直流脉冲电磁波,直接击穿细菌的细胞壁而导致细菌死亡,同时污水在这种直流脉冲电场作用下,迅速发生微弱的氧化还原反应,在阳极区附近产生一定量的氧化性物质与细菌作用,破坏了细菌正常的生理功能,使细胞膜过氧化而死亡,从而达到杀菌目的。
生化联合法
物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。
研究采用吹脱-缺氧-好氧工艺处理含高浓度氨氮垃圾渗滤液。结果表明,吹脱条件控制在pH=95、吹脱时间为12h时,吹脱预处理可去除废水中60%以上的氨氮,再经缺氧-好氧生物处理后对氨氮(由1400mg/L降至19.4mg/L)和COD的去除率>90%。
用生物活性炭流化床处理垃圾渗滤液(COD为800~2700mg/L,氨氮为220~800mg/L)。研究结果表明,在氨氮负荷0.71kg/(m3•d)时,硝化去除率可达90%以上,COD去除率达70%,BOD全部去除。以石灰絮凝沉淀+空气吹脱做为预处理手段提高渗滤液的可生化性,在随后的好氧生化处理池中加入吸附剂(粉末状活性炭和沸石),发现吸附剂在0~5g/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。对于氨氮的去除效果沸石要优于活性炭。
膜-生物反应器技术(MBR)是将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处理系统。MBR处理效率高,出水可直接回用,设备少战地面积小,剩余污泥量少。其难点在于保持膜有较大的通量和防止膜的渗漏。李红岩等[15]利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。研究结果表明,当原水氨氮浓度为2000mg/L、进水氨氦的容积负荷为2.0kg/(m3•d)时,氨氮的去除率可达99%以上,系统比较稳定。反应器内活性污泥的比硝化速率在半年的时间内基本稳定在0.36/d左右。